

Agnitron Agilis MOCVD SOP

Purpose and Scope

This document provides job breakdowns and reference information for MOCVD using the Agnitron Agilis.

University of Utah NANOFAB Confidential

Table of Contents

Agnitron Agilis MOCVD SOP	. 1
Purpose and Scope	. 1
Table of Contents	. 2
Reference Documents	. 2
Acronyms, Abbreviations and Definitions	2
Equipment and Supplies	. 3
Safety	. 3
Forms	. 4
JB 1 – Pre-Process Check	. 6
JB 2 – Reserve and Unlock in HSC	. 9
JB 3 – Open Growth Chamber and Load Samples	. 9
JB 4 – Return lid and Pump Down Chamber	13
JB 5 – Select Recipe	15
JB 6 – Change Recipe Parameters	17
JB 7 – Run Recipe	18
JB 8 – Fill Unattended Work in Progress Sheet	18
JB 9 – Return and Restore Growth Chamber Pressure	19
JB 10 – Remove Sample	20
JB 11 – Restore N2 Purge	21
JB 12 – Restore Screenlock	22
JB 13 – Locking in HSC and Data Collection	22
Job Reference 1 – Bubbler Temperature	23
Job Reference 2 – Analog IDs	24
	25
Revision History	28

Reference Documents

Reference Documents	SOP Number or link
Nanofab Lab User Guide	HTTPS://WWW.NANOFAB.UTAH.EDU/DOCUMENTS/2016/02/SMBB-USER- GUIDE.PDF/

Acronyms, Abbreviations and Definitions

Term	Description
SOP	Standard Operating Procedure
GC	Growth Chamber
JB	Job Breakdown
JR	Job Reference
MFC	Mass Flow Controller
UPW	Ultra Purified Water

Equipment and Supplies

Description	
Agnitron Agilis	Located in the MOCVD bay
IMPERIUM software	In the computer for the Agilis.
Water from an APW source	Container in the MOCVD bay
Sample substrate	Member brings
Sample holder	Located in the glove box or on the table
Sample loading tool	Located in the glove box
Sample holder pedestal	Located in the glove box
Mirror	Located in the glove box

Safety

Follow all Nanofab safety procedures.

Safety alert symbol

The Safety Alert Symbol is used in conjunction with signal words to convey a personal injury hazard is present.

Signal words

DANGER	Indicates an <u>imminently</u> hazardous situation, which if not avoided, will result in death or serious injury. The Safety Alert Symbol should always be used.
WARNING	Indicates a <u>potentially</u> hazardous situation, which if not avoided, may result in death or serious injury. If the safety alert symbol is NOT used in conjunction with this signal word, then the hazard conveyed is severe equipment or material damage.
CAUTION	Indicates a <u>potentially</u> hazardous situation, which if not avoided, may result in minor or moderate injury. If the safety alert symbol is NOT used in conjunction with this signal word, then the hazard conveyed is minor equipment or material damage.

Forms

Training Form

Trainee	:		
Area:			
Item #	Task	Date Training Completed	Trainer
1	JB1 Pre-Process Check		
2	JB2 Reserve and Unlock in HSC.		
3	JB3 Open Growth Chamber and Load Samples		
4	JB4 Return lid and Pump Down Chamber		
5	JB5 Select Recipe		
6	JB6 Change Recipe Parameters		
7	JB7 Run Recipe		
8	JB8 Fill Unattended Work in Progress Sheet		
9	JB9 Once Complete, Restore Growth Chamber Pressure		
10	JB10 Remove Sample		
11	JB11 Restore N2 Purge		
12	JB12 Restore Screenlock		
13	JB13 Locking in HSC and Data Collection		
Training	y Notes (Optional)		

Run Data Collection Form

Date	Member	Precursor	Precursor Flow sccm	Bubbler Temp °C	Deposition Time min	Deposition Temp °C	GC Pressure torr	Spin Speed RPM	O ₂ Flow sccm	Ar Flow sccm	Film Thickness nm

JB 1 – Pre-Process Check

3. Bubbler to be used is powered on and circulating water.

If it is off, press the power button. The display screen should display the target, then actual temp and the pump should begin circulating water.

4. **Bubbler to be used has enough water**. This is determined by checking that the water surface is between the upper and lower level marks as well as whether the bubbler display is showing a water low fault.

If bubbler water level is low, use the container of UPW sourced water to pour to bring it up to between the lower and upper levels. If more water is needed, ask Nanofab staff to refill the water container from the UPW source.

5. **Temp of bubbler to be used is on target**. Temp is displayed digitally. A table matching bubbler precursors to target temperature is in Job Reference 1 of this spec.

Note: It takes a few minutes right after turning on the bubbler for the temp to reach target. Wait for the temp to stabilize at target before proceeding.

Caution:

If bubbler target temp change is needed, request Nanofab Staff member enter the new value into the IMPERIUM software and set the bubbler to the new target. Bubbler consumption values displayed by IMPERIUM software are only correct if bubbler target and settings in software match.

- 6. No audible alarms are sounding on the system.
- 7. Scroll pump (small pump next to bubblers) and Ebara pump (loud pump accessible from behind the tool) are on.

в

В

8. Argon supply is greater than 200 psi.

When Argon supply is 200 psi or less, notify Staff. We will evaluate the length of your next run and determine how many runs worth of Argon remain. In the image shown, the canister in service is a little over 500psi and the canister next in line for service is at 2000 psi. Red valve knobs show open and closed positions.

Caution: Risk of backflow and Argon pressure waste during crossover is the reason cross-over from using one canister to the next is done by Nanofab staff.

Α

JB 2 – Reserve and Unlock in HSC

JB 3 – Open Growth Chamber and Load Samples

Bring Chamber Pressure to Atmosphere

- 1. From the Routine Control menu dropdown, select the GC open close routine and press RUN. This will begin a series of automated purge and fill steps to change the current state away from N2 idle and bring the growth chamber up to atmospheric pressure.
- 2. Wait until a window appears notifying that the growth chamber is at atmospheric pressure.

В

Agnitron Agilis MOCVD SOP Rev 1 Page 10 of 28

Open Chamber

1. Lift lid from growth chamber and place on stand.

Avoid clipping, dinging or otherwise damaging lid edge or o-rings during placement.

С

Load Samples into Chamber

- 1. Load samples onto chuck.
- 2. Transfer chuck into Antechamber
- 3. Close Antechamber
- 4. From inside glove box, open antechamber.
- 5. Position chuck pedestal to convenient position.
- 6. Remove sample from antechamber and place centered on chuck pedestal.
- 7. Use chuck loading tool to pick up chuck.
- 8. Use chuck loading tool to move chuck above growth chamber.
 - 9. Lower loading tool with chuck vertically and place chuck to be centered on spindle.

Caution: The chuck will not balance on the spindle if off center. This will cause a wobble during rotation.

- 10. Use lever on chuck loading tool to release chuck.
- 11. Carefully extract empty loader in vertical rise motion from the growth chamber.

This must be done without bumping the chuck otherwise the chuck will be knocked off center and placement must be redone.

JB 4 – Return lid and Pump Down Chamber

JB 5 – Select Recipe

Agnitron Agilis MOCVD SOP Rev 1 Page 16 of 28

C Select Recipe Select desired recipe. The recipe screen will appear.	Organita New fider Image: Constrict Image: Constrict Image: Constrict Image:	
---	--	--

Α

JB 6 – Change Recipe Parameters

Select and Change Recipe Parameters as Needed

- 1. Identify critical outcome to measure.
- 2. View recipe configurations of previous runs and compare to results to determine primary factors that affect that critical outcome.
- 3. Select parameter to vary
- 4. In the IMPERIUM recipe screen, change the value displayed for that parameter in each relevant step to the value to be tested.

m Recipe [lata M	laintenance	Windows Abou	t					THE ON	iversity of otali		
			REACTOR	ALKYL	s RE	CIPE	PLC Comm Sp	ieed: 6 msec.	Connected			
TEMPERA	TURE			Layers	1	2	3	4	5	6	7	8
SP	YRO			Description	Purge with N2	Generator ON	Generator warm up	Generator warm up	Temp ramp up	Temp stablization	UID GaO	Graded UID GaO
	298			Time	00:02:00.0	00:07:00.0	00:02:00.0	00:04:00.0	00:01:00.0	00:05:00.0	00:30:00.0	00:05:00.0
		_		Precursors	02	02	02	02	02	02	TEGa,O2	TEGa,O2 1
RF GENERATOR	OFF	-		LOOPS								
				Flow 15	500	500	500	508	500	500	500	500
			Oxygen	Ramp	5							-
SOURCES	TATLIS			STATE	ON	ON	ON	ON	ON	ON	ON	ON
				Flow 16	800	0	0	8	8	û	6	0
OXYGEN	OFF		Nitrogen	Ramp	5	1	(interest)					-
NITROGEN	ON			STATE	ON	OFF	OFF	OFF	OFF	OFF	OFF	OFF
ARGON	OFF			Flow 17	0	800			1100			1100
TMGa	OFF	VENT	Argon	Ramp		5			5			-
TMAI	OFF	VENT		STATE	OFF	ON	ON	ON	ON	ON	ON	ON
TMGe	OFF	VENT		Flow 19	10	10	10	4	4	4	4	4
TEGa	OFF	VENT	Silane	Ramp	1	-	-					
	OFF	VENT		STATE	IDLE	IDLE	IDLE	VENT	VENT	VENT	VENT	VENT
			Cilere Dura	Flow 18	1200	1200		1800				1800
			Silane Purge	Ramp	1	-	-	1	-	-	-	
WATER F	LOW			Flow 21	24	24	24	6	6	6	Ó	6
			Silane DD	Ramp	1	-				-	-	
REACTOR:	1.64	GPM	Contract States	Press 20	900	900	900	900	900	900	900	900
RASEPI ATE:	2.26	GPM	Silane Press	Ramp	5							
UT DET ET TE	LIEV											
FERRO:	0.55	GPM		Flow 1	50	50	50	50	50	65	65	22
COIL:	1.34	GPM	TEGa	Ramp	1	-				1		
				STATE	IDLE	IDLE				VENT	RUN	RUN
		1		0 10	7/0	200	700	700	270	7/6	260	100 T

JB 7 – Run Recipe

JB 8 – Fill Unattended Work in Progress Sheet

	1. Fill out the Unattended Work In Progress Form	
A		

JB 9 – Return and Restore Growth Chamber Pressure

JB 10 – Remove Sample

	<u>Re</u>	move Lid	
Α	1.	Remove Lid and place on pedestal.	
		NOTE: This motion will give resistance. Apply force.	
	<u>Re</u>	move Sample	
	1.	Pick up chuck loader tool and engage the lever to enable it to pass over the edge of the chuck.	
	2.	Carefully lower empty chuck loader in vertical motion into the growth chamber until it is low enough to grasp the chuck.	
в		This must be done without bumping the chuck otherwise the chuck will be knocked off balance.	
	3.	Release lever to ensure chuck is secure in the loader.	
	4.	Raise loading tool with chuck vertically and out of the growth chamber.	
		Take care not to clip or bump the growth chamber.	
	5.	Hover chuck over chuck pedestal.	
	6.	Use lever on chuck loading tool to release chuck.	

JB 11 – Restore N2 Purge

JB 12 – Restore Screenlock

	Select Windows Icon	
Α	1. From bottom left hand corner of the screen, select the Windows icon	
	2. Select Screen Lock	

JB 13 – Locking in HSC and Data Collection

	Lo	cate Computer with HSC access
	1.	Log in to HSC
	2.	Select MOCVD session.
Α	3.	Select Lock
ļ	4.	Enter results data as prompted.
	5.	If time is greater than MOCVD process time due to unattended processing, contact Nanofab Staff member to adjust to actual time.

Job Reference 1 – Bubbler Temperature

Debber Reine Markelan							
Bubblers Source Monito	oring						
Alkyl Source Indicator:	Normal	Limit 1 (<30%	() <mark> </mark>	imit 2 (<20%)	Limit 3 (<1	10%)	
MFC	Bubbler Type	Left (g)	Left (%)	lnit (g)	Temp (C)	VP (Torr)	MW (g/mol)
1-TEGa (0-500)	TEGa - C6H15Ga	62.67 g	41%	150	16	4.05	156.91
2-TMGe (0-200)	TMGe - C4H12Ge	26.18 g	26%	100	3	151.66	132.73
3-TMAI (0-100)	TMAI - C3H9AI	47.33 g	94%	50	18	7.72	72.10
4-TMGa (0-200)	TMIn - C3H9In	99.83 g	99%	100	10	0.46	159.93
5-TMIn (0-200)	TMIn - C3H9In	100 g	99%	100	10	0.46	159.93

Bubblers, precursors and their target temperatures are listed above.

Job Reference 2 – Analog IDs

Analog IDs are helpful when troubleshooting errors displayed by the IMPERIUM software. Often the errors are listed in the alarms and errors panel by ID number and not name. Search by ID to find the name.

JR2 (1 of 4)

Analog ID	Spare	Read Only	Analog Name	Analog Type		Units	Input High (mV)	Input Low (mV)	Input Value Max
1			TEGa	MFC	-	sccm	5000	0	500
2			TMGe	MFC	-	sccm	5000	0	200
3			TMAI	MFC	-	sccm	5000	0	100
4			TMGa	MFC	-	sccm	5000	0	200
5			TMIn	MFC	-	sccm	5000	0	200
6			TMAI Push	MFC	-	sccm	5000	0	1000
7			TMGa Push	MFC	-	sccm	5000	0	1000
8			TMAIDD	MFC	-	sccm	5000	0	200
9			TMGa DD	MFC	-	sccm	5000	0	500
10			TEGa Press	PCU	-	Torr	5000	0	1000
11			TMGe Press	PCU	-	Torr	5000	0	1000
12			TMAI Press	PCU	-	Torr	5000	0	1000
13			TMGa Press	PCU	-	Torr	5000	0	1000
14			TMIn Press	PCU	-	Torr	5000	0	1000
15			Oxygen	MFC	-	sccm	5000	0	2000
16			Nitrogen	MFC	-	sccm	5000	0	5000
17			Argon	MFC	-	sccm	5000	0	2000
18			Silane Purge	MFC	-	sccm	5000	0	2000
19			Silane	MFC	-	sccm	5000	0	50
20			Silane Press	PCU	-	Torr	5000	0	1000
21			Silane DD	MFC	-	sccm	5000	0	100
22			Inj Blk Run	MFC	-	sccm	5000	0	10000
23			Inj Blk Vent	MFC	-	sccm	5000	0	2000
24			Shroud	MFC	-	sccm	5000	0	10000
25	V		Spare	None	-	-	0	0	0
26			Spare	None	-		0	0	0
27	V		Spare	None	-	-	0	0	0
28			Spare	None	-		0	0	0
29			Spare	None	-	-	0	0	0
30			Spare	None	-		0	0	0
31			Spare	None	-		0	0	0
32			Spare	None	-	-	0	0	0
33			GC Press	rBaratron	-	Torr	1000	0	1000
34			Spare	Press	-	Torr	10000	0	1000
35			Baratron Purge	MFC	-	sccm	5000	0	1000

JR2 (2 of 4)

Analog ID	Spare	Read Only	Analog Name	Analog Type		Units	Input High (mV)	Input Low (mV)	Input Value Ma
36			Spare	Motor	-	RPM	10000	0	1000
37			TV Position	TV Pressure	-	Torr	10000	0	100
38			Temperature	Temp	-	С	10000	0	1500
39		V	Antechamber Exhaust Press	None	-	-	10000	0	10000
40	V	V	Spare	None	-		0	0	0
41	V		Spare	None	-		0	0	0
42		V	Baseplate Temp	K-type	-	С	10000	0	1372
43		V	Reactor Wall Temp	K-type	-	С	10000	0	1372
44		V	Coil Temp	K-type	-	С	10000	0	1372
45			Shower Head Temp	K-type	-	с	10000	0	1372
46			Spare	None	-		0	0	0
47			Spare	None	-		0	0	0
48	V		Spare	None	-		0	0	0
49			Spare	None	-		0	0	0
50			Spare	None	-		0	0	0
51			Spare	None	-		0	0	0
52			Spare	None	-		0	0	0
53			Spare	None	-		0	0	0
54			Spare	None	-		0	0	0
55			New MFC	MFC	-	sccm	5000	0	1000
56	V		Spare	None	-		0	0	0
57			Spare	None	-		0	0	0
58			Spare	None	-		0	0	0
59			Spare	None	-		0	-6	0
60	V		Spare	None	-		0	-5	0
61			Spare	None	-		0	0	0
62			Spare	None	-		0	0	0
63			Spare	None	-	-	0	0	0
64			Spare	None	-		0	0	0
65	V		Spare	None	-		0	0	0
66			Spare	None	-		0	0	0
67			Spare	None	-		0	0	0
58			Spare	None	-		0	0	0
69			Spare	None	-		0	0	0
70			Spare	None	-		0	0	0

JR2 (3 of 4)

Analog ID	Spare	Read Only	Analog Name	Analog Ty	pe	Units	Input High (mV)	Input Low (mV)	Input Value Max
71	V		Spare	None	-		0	0	0
72	V		Spare	None	-		0	0	0
73	V		Spare	None	-		0	0	0
74			Spare	None	-		0	0	0
75	V		Spare	None	-		0	0	0
76	V		Spare	None	-		0	0	0
77	V		Spare	None	-		0	0	0
78			Spare	None	-		0	0	0
79	V		Spare	None	-		0	0	0
80			Spare	None	-		0	0	0
81	V		Spare	None	-		0	0	0
82			Spare	None	-		0	0	0
83	V		Spare	None	-		0	0	0
84			Spare	None	-		0	0	0
85	V		Spare	None	-		0	0	0
86			Spare	None	-		0	0	0
87	V	V	Spare	None	-		0	0	0
88	V		Spare	None	-		0	0	0
89	V		Unused	None	-		0	0	0
90			Unused	None	-		0	0	0
91	V		Unused	None	-		0	0	0
92			Unused	None	-		0	0	0
93			Unused	None	-		0	0	0
94	V		Unused	None	-		0	0	0
95	V		Unused	None	-		0	0	0
96			Unused	None	-		0	0	0
97	V	V	Unused	None	-		0	0	0
98			Unused	None	-		0	0	0
99	V		Unused	None	-		0	0	0
100			Carrier Gas	MFC	-	scom	5000	0	10000
101			PV INNER	Temp	-	С	10000	0	1500
102			SP INNER	Temp	-	С	10000	0	1500
103			PV OUTER	Temp	-	с	10000	0	1500
104			SP OUTER	Temp	-	с	10000	0	1500
105			Motor	Motor	-	BPM	10000	0	10000

JR 2 (4 of 4)

Analog ID	Spare	Read Only	Analog Name	Analog Type		Units	Input High (mV)	Input Low (mV)	Input Value Max
106			Unused	None	-	-	10000	0	0
107		v	Unused	None	-	-	10000	0	0
108		V	Unused	None	-	-	10000	0	0
109		V	Unused	None	-	-	10000	0	0
110		V	Unused	None	-	-	10000	0	0
111			Unused	None	-	-	10000	0	0
112		V	Unused	None	-	-	10000	0	0
113		V	Unused	None	-	-	10000	0	0
114			Unused	None	-	-	10000	0	0
115			Unused	None	-	-	10000	0	0
116			Unused	None	-	-	10000	0	0
117		V	Baseplate Water Flow	Water Flow	-	GPM	5000	0	4.2
118		V	Reactor Wall Water Flow	Water Flow	-	GPM	5000	0	4.2
119		V	Ferro Water Flow	Water Flow	-	GPM	5000	0	4.2
120		V	Coil Water Flow	Water Flow	-	GPM	5000	0	4.2
121		V	Antechamber Press	None	-	-	3187	1940	0
122		V	Current Outer	Current	-	A	10000	0	166
123			Voltage Outer	Voltage	-	V	10000	0	60
124			Current Inner	Current	-	A	10000	0	166
125			Voltage Inner	Voltage	-	V	10000	0	60
126		V	Exhaust Press	Press	-	Torr	5000	0	5000
127		V	Unused	None	-	-	10000	0	0
128	V	V	Unused	None	-	-	10000	0	0
129		V	Unused	None	-	-	10000	0	0
130		V	Unused	None	-		10000	0	0
131		V	Unused	None	-		10000	0	0
132		V	Unused	None	-		10000	0	0
133			Temperature Inner	None	-	-	32767	-32767	3277
134			Temperature Outer	None	-	-	32767	-32767	3277
135			Baseplate Temperature	K-type	-	lc	10000	0	1372

Revision History

Rev	Date	Originator	Description of Changes
1	2/06/2024	Kathy Anderson	Initial Release